Could yeast prion domains originate from polyQ/N tracts?
نویسندگان
چکیده
A significant body of evidence shows that polyglutamine (polyQ) tracts are important for various biological functions. The characteristic polymorphism of polyQ length is thought to play an important role in the adaptation of organisms to their environment. However, proteins with expanded polyQ are prone to form amyloids, which cause diseases in humans and animals and toxicity in yeast. Saccharomyces cerevisiae contain at least 8 proteins which can form heritable amyloids, called prions, and most of them are proteins with glutamine- and asparagine-enriched domains. Yeast prion amyloids are susceptible to fragmentation by the protein disaggregase Hsp104, which allows them to propagate and be transmitted to daughter cells during cell divisions. We have previously shown that interspersion of polyQ domains with some non-glutamine residues stimulates fragmentation of polyQ amyloids in yeast and that yeast prion domains are often enriched in one of these residues. These findings indicate that yeast prion domains may have derived from polyQ tracts via accumulation and amplification of mutations. The same hypothesis may be applied to polyasparagine (polyN) tracts, since they display similar properties to polyQ, such as length polymorphism, amyloid formation and toxicity. We propose that mutations in polyQ/N may be favored by natural selection thus making prion domains likely by-products of the evolution of polyQ/N.
منابع مشابه
Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis
The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, beta-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigat...
متن کاملEffects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
Prions are infectious protein conformations that are generally ordered protein aggregates. In the absence of prions, newly synthesized molecules of these same proteins usually maintain a conventional soluble conformation. However, prions occasionally arise even without a homologous prion template. The conformational switch that results in the de novo appearance of yeast prions with glutamine/as...
متن کاملPolyglutamine tracts as modulators of transcriptional activation from yeast to mammals.
Microsatellite repeats are genetically unstable and subject to expansion and shrinkage. A subset of them, triplet repeats, can occur within the coding region and specify homomeric tracts of amino acids. Polyglutamine (polyQ) tracts are enriched in eukaryotic regulatory proteins, notably transcription factors, and we had shown before that they can contribute to transcriptional activation in mamm...
متن کاملControlling the prion propensity of glutamine/asparagine-rich proteins
The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have be...
متن کاملPrion-like proteins sequester and suppress the toxicity of huntingtin exon 1.
Expansions of preexisting polyglutamine (polyQ) tracts in at least nine different proteins cause devastating neurodegenerative diseases. There are many unique features to these pathologies, but there must also be unifying mechanisms underlying polyQ toxicity. Using a polyQ-expanded fragment of huntingtin exon-1 (Htt103Q), the causal protein in Huntington disease, we and others have created trac...
متن کامل